Maturità 2019: secondo problema – primo punto

Un condensatore piano è formato da due armature circolari di raggio R, poste a distanza d, dove R e d sono espresse in metri (m). Viene applicata alle armature una differenza di potenziale variabile nel tempo e inizialmente nulla.

All’interno del condensatore si rileva la presenza di un campo magnetico B.

Trascurando gli effetti di bordo, a distanza r dall’asse di simmetria del condensatore, l’intensità di B, espressa in tesla(T), varia secondo la legge:

\left | B \right |=\cfrac{kt}{\sqrt{\left ( t^2+a^2 \right )^{3}}}r con r\leqslant R

dove a e k sono costanti positive e t è il tempo trascorso dall’istante iniziale, espresso in secondi (s).

  • Dopo aver determinato le unità di misura di a e k
  • spiegare perché nel condensatore è presente un campo magnetico anche in assenza di magneti e correnti di conduzione
  • Qual è la relazione tra le direzioni di B e del campo elettrico E nei punti interni al condensatore?

Prerequisiti

  • conoscenza delle unità di misura che caratterizzano il campo induzione magnetica
  • conoscenza della legge di Ampere Maxwell o quarta equazione di Maxwell.

Sviluppo

Primo punto

Si parte dalla relazione espressa solo in funzione delle unità di misura:

[T]=k\cfrac{[s][m]}{\sqrt{([s]^2)^3}}

dove a è espressa inevitabilmente in secondi.

Per cui k=\cfrac{[T][s]^2}{[m]}

Secondo punto

Si applica la legge di Ampere-Maxwell considerando nullo le correnti che non sono presenti in questo caso:

C(B)=\mu_{0}\varepsilon_{0}\cfrac{d\phi (E)}{dt}

essendovi la circuitazione vi è il campo magnetico.

Terzo punto

Le linee di campo elettrico sono perpendicolari alle armature mentre quelle di campo magnetico sono concentriche rispetto al centro del condensatore e sono perpendicolari a quelle elettriche.

Questa voce è stata pubblicata in Senza categoria. Contrassegna il permalink.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *