Maturità 2019: quarto quesito

Dati i punti A(2,0,-1) e B(-2,2,1), provare che il luogo geometrico dei punti P dello spazio, tali che, \overline{\hbox{PA}}=\sqrt{2}\overline{\hbox{PB}}, è costituito da una superficie sferica S e scrivere la sua equazione cartesiana. Verificare che il punto T(-10,8,7) appartenga ad S e determinare l’equazione del piano tangente in T ad S.

Prerequisiti

  • conoscenza della distanza tra due punti nello spazio
  • definizione di raggio e centro di una sfera
  • conoscenza della retta passante per due punti nello spazio
  • conoscenza della relazione tra vettore direzione della retta e di quello del piano
  • conoscenza condizione di appartenenza di un punto nello spazio.

Sviluppo

Per prima cosa impongo la condizione \overline{\hbox{PA}}=\sqrt{2}\overline{\hbox{PB}}.

\sqrt{(x-2)^2+y^2+(z+1)^2}=\sqrt{2}\cdot \sqrt{(x+2)^2+(y-2)^2+(z-1)^2}

elevando tutto al quadrato e sviluppando i quadrati del binomio si ha:

x^2-x+4+y^2+z^2+2z+1=2x^2+8x+8+2y^2-8y+8+2z^2-4z+2

sommando i monomi simili ed ordinandoli nella forma della sfera si ha:

x^2+y^2+z^2+12x-8y-6z+13=0

per dimostrare che rappresenti una sfera i coefficienti dei termini al quadrato devono essere uguali: ciò è soddisfatto; inoltre il valore del raggio deve dare un valore maggiore di zero. Le coordinate del centro sono:

C(-6,4,3)

e quelle del raggio sono:

r=\sqrt{36+16+9-13}=r=\sqrt{48}

quindi è proprio l’equazione di una sfera:

Per verificare che il punto T(-10,8,7) appartenga alla sfera è sufficiente sostituire le sue coordinate all’equazione della sfera e verificare che si abbia un’identità.

100+64+49-120-64-42+13=0 ed infatti è un’identità:

Adesso determino la retta passante per il centro e per il punto T.

\left\{\begin{matrix} x=(-10+6)t-6\\  y=(8-4)t+4\\  z=(7-3)t+3 \end{matrix}\right.

quindi il vettore direzione ha componenti v(-4,4,4) che sono le stesse componenti del vettore direzione del piano perpendicolare a tale retta.

L’equazione del piano sarà quindi:

-4x+4y+4z-d=0

il piano passa per il punto T, per cui è sufficiente sostituire le sue coordinate per determinare d:

40+32+28+d=0

ed il piano avrà equazione:

-4x+4y+4z-100=0

oppure semplificando:

x-y-z+25=0

Questa voce è stata pubblicata in Senza categoria. Contrassegna il permalink.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *