Maturità 2019: primo problema – quarto punto

Si supponga, in assenza dei tre fili, che il contorno della regione S rappresenti il profilo di una spira conduttrice di resistenza R = 0,20 Ω. La spira è posta all’interno di un campo magnetico uniforme di intensità B=1.5\cdot 10^{-2}T perpendicolare alla regione S. Facendo ruotare la spira intorno all’asse x con velocità angolare ω costante, in essa si genera una corrente indotta la cui intensità massima è pari a 5,0mA. Determinare il valore di ω.

Prerequisiti

  • conoscenza della legge di Faraday Neumann applicata ad una superficie in rotazione che è equivalente ad un campo magnetico sinusoidale.

Sviluppo

La legge di Faraday Neumann dice che:

V=f.e.m=-\cfrac{d\phi(B) }{dt}

B è costante

V=RI

S=S\cos \left ( \omega t \right ) ed è l’unico termine che varia con il tempo per cui la sua derivata risulta:

S'=-S\omega \sin  \left ( \omega t \right )

che sostituita nell’equazione di partenza si ha:

RI=S\omega B\sin  \left ( \omega t \right )

Siccome si ha il valore massimo:

\omega =\cfrac{RI}{SB}=\cfrac{0.20\cdot 5\cdot 10^{-3}}{\cfrac{4}{3}\cdot 1.5\cdot 10^{-2}}=0.05 \frac{rad}{s}

Questa voce è stata pubblicata in Senza categoria. Contrassegna il permalink.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *