Soluzioni sulle disequazioni

6.1.

surrealismo-rostros-con-frutas-oleos4x+7<2x-9

Raccolgo le x a sinistra del verso della disequazione e i numeri a destra.

Per fare questo sommo a sinistra e destra

  • -7
  • -2x

-2x-7+4x+7<2x-9-2x-7.

-2x-\not{7}+4x+\not{7}<\not{2x}-9-\not{2x}-7.

-2x+4x<-9-7.

2x<-16

Vale sempre il fatto che il numero che moltiplica la x debba essere l’1 per cui divido a destra e a sinistra per 2

\cfrac{1}{2}\cdot 2x<-16\cdot \cfrac{1}{2}

la soluzione è:

x<-8

Bisogna sempre fare la rappresentazione grafica della soluzione:

disequazione6.2.

8-5x>2x-20.

-5x-2x>-20-8.

-7x>-28.

Siccome il coefficiente della x è negativo cambio di segno moltiplicando per -1 a sinistra e a destra e cambio il verso della disequazione.

7x<28.

\cfrac{1}{7}\cdot 7x<28\cdot \cfrac{1}{7}.

x<4

disequazione

7.1.

Primo metodo

2x-\cfrac{1}{2}>5x-1

in questo semplice caso si potrebbe direttamente raggruppare le x a sinistra del verso e i numeri a destra:

2x-5x> \cfrac{1}{2}-1

-3x> -\cfrac{1}{2}

cambio il verso della disequazione:

3x< \cfrac{1}{2}

quindi divido a sinistra e a destra per 3 ed ho:

\cfrac{1}{3}\cdot 3x< \cfrac{1}{2}\cdot \cfrac{1}{3}

\cfrac{1}{\not{3}}\cdot \not{3}x< \cfrac{1}{2}\cdot \cfrac{1}{3}

x< \cfrac{1}{6}

Secondo metodo

2x-\cfrac{1}{2}>5x-1

Faccio il minimo comune multiplo a sinistra e a destra:

\cfrac{4x-1}{2}>\cfrac{10x-2}{2}

moltiplico per 2 a sinistra e a destra:

2\cdot \cfrac{4x-1}{2}>\cfrac{10x-2}{2}\cdot 2

\not{2}\cdot \cfrac{4x-1}{\not{2}}>\cfrac{10x-2}{\not{2}}\cdot \not{2}

4x-10x>-2+1

-6x>-1

moltiplico per -1 a sinistra e a destra cambiando il verso della disequazione

6x<1

\cfrac{1}{6}\cdot 6x<1\cdot \cfrac{1}{6}

\cfrac{1}{\not{6}}\cdot \not{6}x<1\cdot \cfrac{1}{6}

e quindi

x< \cfrac{1}{6}

Graficamente è:

Immagine7.2.

\cfrac{x-1}{2}-1>-x

minimo comune multiplo

\cfrac{x-1-2}{2}>-\cfrac{2x}{2}

x-1-2>-2x

2x+x>1+2

3x>3

\cfrac{1}{3}\cdot 3x>3\cdot \cfrac{1}{3}

\cfrac{1}{\not{3}}\cdot \not{3}x>\not{3}\cdot \cfrac{1}{\not{3}}

la soluzione è:

x>1

Graficamente

Immagine28.1.

\left ( x-1 \right )^{2}+9x\left ( x-1 \right )>x^{2}-4x+4-\left ( 1+3x \right )\left ( 1-3x \right )

Per essere in grado di affrontare agevolmente questa è necessario ricordarsi bene i prodotti notevoli.

La prima parentesi è il quadrato della differenza di un binomio, mentre l’ultima parentesi e la differenza del quadrato di un binomio.

x^2-2x+1+9x^2-9x>x^2-4x+4-\left ( 1-9x^2 \right )

Si noti come l’ultima parentesi l’ho tenuta in quanto vi è il simbolo – che modifica il segno di tutti i monomi presenti all’interno della parentesi.

x^2-2x+1+9x^2-9x>x^2-4x+4-1+9x^2

\not{x^2}-2x+1+\not{9x^2}-9x>\not{x^2}-4x+4-1+\not{9x^2}

-2x+1-9x>-4x+4-1

-2x-9x+4x>+4-1-1

-7x>2

7x<-2

\cfrac{1}{7}\cdot 7x<-2\cdot \cfrac{1}{7}

\cfrac{1}{\not{7}}\cdot \not{7}x<-2\cdot \cfrac{1}{7}

e la soluzione diventa:

x<-\cfrac{2}{7}

Graficamente si ha:

Immagine3

Pubblicato in Senza categoria | Lascia un commento

Esercizi sui massimi e minimi

Jim Warren

Jim Warren

Per determinare i massimi o i minimi di una funzione si deve:

come premessa sempre prima determinare il dominio della funzione perché potrebbe capitare di trovare un massimo o un minimo ed essere escluso perché all’esterno del dominio.

  • calcolare la derivata prima
  • porre a zero la derivata prima per trovare i punti stazionari.
  • studiare il segno della derivata prima
  • se la derivata prima è negativa la funzione è decrescente altrimenti crescente
  • determinati i punti di minimo o massimo si sostituiscono nella funzione di partenza e NON nella derivata prima (ovviamente perché se si facesse di troverebbe 0!) e si trova la relativa ordinata.

Esercizi per un livello base:

6.1. y=x^3-3x^2+1 \left [ x_{M}=0;x_{m}=2 \right ]
6.2. y=\cfrac{x^4}{4}-\cfrac{2}{3}x^{3} \left [ x_{m}=2 \right ]
6.3. y=x^{3}-2x^{2}+x-4 \left [ x_{m}=1; x_{M}=\cfrac{1}{3}\right ]
6.4. y=x^{4}+2x \left [ x_{m}=-\cfrac{1}{\sqrt[3]{2}} \right ]
 6.5. y=\cfrac{1}{5}x^{5}+\cfrac{1}{3}x^{3} nessun punto di max o min
6.6. y=\cfrac{1}{3}x^{3}-2x^{2}+3x-2 \left [ x_{M}=1;x_{m}=3 \right ]
6.7. y=6x^{5}-10x^{3} \left [ x_{M}=-1;x_{m}=1 \right ]
6.8. y=\cfrac{x^{4}}{4}-2x^{3}+1 \left [ x_{m}=6 \right ]
6.9. y=x^{4}+\cfrac{4}{3}x^{3}-4x^{2}-1 \left [\left x_{m}=-2;x_{m}=1;x_{M}=0 \right ]

Esercizi per un livello discreto

7.1.  y=\cfrac{x^3}{3}-x^{2}+x nessun punto di max o min
7.2. y=\cfrac{x^{3}}{\left ( 1-x \right )^{2}} \left [ x_{m}=3 \right ]
7.3. y=\cfrac{1}{x^{2}-4} \left [ x_{M}=0 \right ]
7.4. y=\cfrac{x^2-x-1}{x^{2}-x+1} \left [ x_{m}=\cfrac{1}{2} \right ]
 7.5. y=\cfrac{1}{x^{2}+4}  \left ( x_{M}=0 \right )
7.6. y=\cfrac{2x^{2}}{x-1}  \left [ x_{M}=0;x_{m}=2 \right ]
7.7. y=\cfrac{1}{x^{2}-3x+2} \left [ x_{M}=\cfrac{3}{2} \right ]
7.8. y=\cfrac{x^{2}-3x+1}{2x^{2}-3x+1} \left [ x_{M}=0;x_{m}=\cfrac{2}{3} \right ]
7.8. y=\cfrac{-x^{2}+3x}{2x-8} \left [ x_{m}=2;x_{M}=6 \right ]
7.9. y=\cfrac{x-3}{\left ( x-2 \right )^{3}} \left [ x_{M}=\cfrac{7}{2} \right ]
7.10. y=\cfrac{x^{3}-3x^{2}+4}{x^{2}} \left [ x_{m}=2 \right ]

Per un livello buono

8.1. y=x^{3}e^{x} \left [ x_{m}=-3 \right ]
8.2. y=\ln x-x \left [ x_{M}=1 \right ]
8.3. y=x\ln x  \left [ x_{m}=\cfrac{1}{e} \right ]
8.4. y=e^{x}-x  \left [ x_{m}=0 \right ]
8.5. y=\cfrac{x^{3}}{3}e^{-x}  \left [ x_{M}= 0\right ]
8.6. y=\cfrac{x^{2}-4}{4\left ( x^{2}-1 \right )} \left [ x_{m}=0 \right ]

Per un livello quasi ottimo

 9.1. y=2x^{2}\ln x  \left [ x_{m}=\cfrac{1}{\sqrt{e}} \right ]
9.2. y=\sqrt[3]{x^{2}}-x \left [ x_{m}=0-;x_{M}=\cfrac{8}{27} \right ]
9.3. y=\sqrt[3]{x^{5}-x^{2}} \left [ x_{M}=0;x_{m}=\cfrac{2}{3} \right ]
9.4. y=\sqrt[3]{\left ( x-1 \right )^{2}} \left [ x_{m}=1 \right ]
9.5. y=\sqrt[5]{x^{2}} \left [ x_{m}=0 \right ]
9.6. y=\cfrac{3}{2}\sqrt[3]{\left ( 1-2x \right ^{2})} \left [ x_{m}=\cfrac{1}{2} \right ]

Per muoversi con sicurezza

10.1.  y=e^{\frac{2x^{2}}{x-1}}  \left [ x_{M=0};x_{m}=2 \right ]
10.2. 1+\sqrt[3]{\left ( x+3 \right )^{2}} \left [ x_{m}=-3 \right ]
10.3. y=2x\sqrt{x+1} \left [ x_{M}=-1;x_{m}=-\cfrac{2}{3} \right ]
10.4. y=\ln \cfrac{x-1}{x+3} \left [ x_{m}=-6;x_{M} =-4\right ]
Pubblicato in Senza categoria | Lascia un commento

Disequazioni lineari- Esercizi

[:it]

Catrin-Welz-Stein

Catrin-Welz-Stein

Per risolvere una disequazione si richiede soltanto di saper risolvere un’equazione di primo grado, valgono le stesse regole:

  • il coefficiente che moltiplica la x deve sempre essere positivo
  • per arrivare al punto precedente si può:
    • moltiplicare a sinistra e a destra per la stessa quantità,
    • sommare a sinistra e a destra per la stessa quantità
    • dividere a sinistra e a destra per la stessa quantità

Ricordarsi che:

il segno “>” significa maggiore,

il segno “<” significa minore.

 

UNICO AVVERTIMENTO
Se si moltiplica a sinistra e a destra per un numero negativo si cambia il verso

 

Esercizi di base che riprendono le equazioni di primo grado:

Esercizi di tipo  A

Ne sviluppo uno come esempio

x-3>10

x>10+3

x>13

Cosa significa il risultato?

Che tutti i numeri maggiori di 13 fanno sì che la disequazione x-3>10 sia effettivamente maggiore di zero.

 

A.1. x+5>15
A.2. x+7<32
A.3. x+3>12
A.4. x+2<18
A.5. 15+x>30
A.6. 17+x<13
A.7. x-5>4
A.8.   x-6<2
A.9. x-7>7
A.10. x-15<2

Esercizi di base di tipo B

Ne sviluppo uno come esempio:

3\cdot x>5

divido entrambi i membri per il numero che moltiplica la x

\cfrac{2\cdot x}{2}>\cfrac{3}{2}

si semplifica il 2 del numeratore con il 2 del denominatore del membro a sinistra dell’uguale.

\cfrac{\not 2\cdot x}{\not2}>\cfrac{3}{2}

x>\cfrac{3}{2}

B.1. 2\cdot x>3
B.2. 4 \cdot x<5
B.3. 6 \cdot x>12
B.4. 7\cdot x<14
B.5. 10 \cdot x>20
B.6. 30 \cdot x<15
B.7. 8 \cdot x>4
B.8. 9 \cdot x<18
B.9. 3 \cdot x>6
B.10. 14 \cdot x<28

Esercizi di base di tipo C

Sviluppo un esempio:

\cfrac{x}{6}>4

moltiplico entrambi i membri per 6

\cfrac{x\cdot 6}{6}>4\cdot 6

quindi semplifico il 6 del numeratore con il 6 del denominatore del membro a sinistra dell’uguale.

\cfrac{x\cdot \not 6}{\not 6}>4\cdot 6

il risultato è

x>24

C.1.  \cfrac{x}{3}>4
C.2.  \cfrac{x}{7}<12
C.3. \cfrac{x}{2}>8
C.4. \cfrac{x}{5}<10
C.5. \cfrac{x}{6}>2
C.6. \cfrac{x}{4}<9
C.7.  \cfrac{x}{8}>1
C.8. \cfrac{x}{10}<20
C.9. \cfrac{x}{12}>2
C.10. \cfrac{x}{9}<-2

Esercizi base di tipo D: cambio del verso della disequazione

Ne sviluppo uno come esempio

-x-3>10

-x>10+3

-x>13

siccome non ha significato indicare come soluzione -x moltiplico a sinistra e a destra per -1 ma DEVO CAMBIARE IL VERSO DELLA DISEQUAZIONE

-1\cdot \left ( -x  \right )<-1\cdot \left (13  \right )

x<-13

D.1. -x+5>15
D.2. -x+7<32
D.3. -x+3>12
D.4. -x+2<18
D.5. 15-x>30
D.6. 17-x<13
D.7. -x-5>4
D.8.   -x-6<2
D.9. -x-7>7
D.10. -x-15<2

 

Livello sufficiente [6].

6.1.  4x+7<2x-9 [x<-8]
6.28-5x>2x-20 [x<4]
6.36(x+2)+3\leq 18 \left [ x\leq \cfrac{1}{2} \right ]
6.4. 4\left ( 3x-1 \right )-4\left ( 1+x \right )>6\left ( x+2 \right )-15 \left [ x> \cfrac{5}{2} \right ]
6.5. x-3\left ( x+2 \right )\leq 10+4\left ( 1-2x \right ) \left [ x\leq \cfrac{10}{3} \right ]
6.6. 5x+9\left ( 2-x \right )>3\left ( x+1 \right )-4\left ( 2+x \right )-3x Ogni valore di x
6.7. 8-2\left ( 3-4x\right )-\left (6x-10\right )\leq 6\left ( 4x+3\right )+8x \left [ x\geq -\cfrac{1}{5} \right ]
6.8. 4(2x-7)-3x+8\left ( 3-x \right )>9x-4\left ( 3x-1 \right )+20 nessun valore di x
6.9 3x-8>0 \left [ x>\cfrac{8}{3} \right ]
6.10. 5x-2<8x+3 \left [ x>-\cfrac{5}{3} \right ]
6.11. 1-3x<2x-6 \left [ x>\cfrac{7}{5} \right ]
6.12. 5x-2>2x+4 \left [ x>2\right ]
6.13. 3x+3>9x-3 \left [ x<1 \right ]
6.14. 18x+9>9x+11 \left [ x>\cfrac{2}{9} \right ]
6.15. 16x+10<17x+6 \left [ x>4 \right ]
6.16. 2x-5<3+2x sempre vera
6.17. 7a+1<7a nessun valore di a
6.18. 2(9x+5)>3(3x+4) \left [ x>\cfrac{2}{9} \right ]
6.19. 12(x+1)<17(x-1)+25 \left [ x>\cfrac{4}{5} \right ]
6.20. 6x-(4-x)<8x+(1-2x) \left [ x<5 \right ]
6.21. 6(x+1) \geq 3(1+2x) ogni valore di x
6.22. 6x-12+3(x+2)+2(x+3)<11 nessun valore di x
6.23. 10(x+1)+2(x+1)<11x+12 \left [ x<0 \right ]

Livello discreto: richiede manualità con le frazioni e lo sviluppo delle parentesi [7]

 7.1. 2x-\cfrac{1}{2}>5x-1 \left [x<\cfrac{1}{6}\right ]
7.2. \cfrac{x-1}{2}-1> -x \left [ x>1 \right ]
7.3. 3x+\cfrac{3}{2}-x>\cfrac{x+1}{2} \left [ x>-\cfrac{2}{3} \right ]
7.4. x+\cfrac{1-x}{3}>2x-1 \left [ x<1 \right ]
7.5. \cfrac{1}{2}x-2\leq 3x-1 x\geq -\cfrac{2}{5}
7.6. 2x+3>\cfrac{4x-1}{2} \left [ \forall x\in \mathbb{R} \right ]
7.7. \cfrac{1}{5}\left ( x-2 \right )-\left [ 1+2x-\left ( x+\cfrac{1}{2} \right ) \right ]\leq 1 \left [ x\geq -\cfrac{19}{8} \right ]
7.8. 3x-1>\cfrac{9x+8}{3} nessuna soluzione
7.9. \cfrac{2x+1}{3}-\cfrac{x-1}{2}<0 \left [ x<-5 \right ]

Verso un livello buono e con una certa sicurezza [8]

8.1. \left ( x-1 \right )^{2}+9x\left ( x-1 \right )>x^{2}-4x+4-\left ( 1+3x \right )\left ( 1-3x \right )  \left [ x<-\cfrac{2}{7} \right ]
8.2. \cfrac{\left ( x-1 \right )^{2}}{2}-\left ( \cfrac{x+1}{2} \right )^{2}-1<\cfrac{x^{2}-1}{4} \left [ x>-\frac{1}{3} \right ]
8.3. 9x+20\geq 2\left [ \cfrac{29}{4}-6\left ( x-1 \right )+9x-\cfrac{9}{4} \right ] \left [ x\geq \cfrac{2}{3} \right ]
8.4. \cfrac{\left ( x+1 \right )\left ( x-1 \right )}{2}-\cfrac{2x-3}{4}>\cfrac{\left ( 2x+1 \right )\left ( x-3 \right )}{4} \left [ x>-\cfrac{4}{3} \right ]

Per un livello ottimo [9]

9.1.\cfrac{x}{\sqrt{2}}+\cfrac{\sqrt{2}}{\sqrt{2}-2}>x-\cfrac{1}{2-\sqrt{2}}  \left [ x<-\left ( \sqrt{2}+1 \right ) \right ]
9.2. \cfrac{\left ( x+\sqrt{2} \right )\left ( \sqrt{2}-x \right )}{4}+\cfrac{x}{3}>\cfrac{2\left ( x+1 \right )-3\left ( 1-2x \right )}{6}-\cfrac{1}{4}x^2 \left [ x<\cfrac{2}{3} \right ]

soluzioni[:en]

Catrin-Welz-Stein

Catrin-Welz-Stein

Per risolvere una disequazione si richiede soltanto di saper risolvere un’equazione di primo grado, valgono le stesse regole:

  • il coefficiente che moltiplica la x deve sempre essere positivo
  • per arrivare al punto precedente si può:
    • moltiplicare a sinistra e a destra per la stessa quantità,
    • sommare a sinistra e a destra per la stessa quantità
    • dividere a sinistra e a destra per la stessa quantità
UNICO AVVERTIMENTO
Se si moltiplica a sinistra e a destra per un numero negativo si cambia il verso

Livello sufficiente: richiedono di ricordarsi le regole per la soluzione delle equazioni di primo grado.

6.1.  4x+7<2x-9 [x<-8]
6.28-5x>2x-20 [x<4]
6.36(x+2)+3\leq 18 \left [ x\leq \cfrac{1}{2} \right ]
6.4. 4\left ( 3x-1 \right )-4\left ( 1+x \right )>6\left ( x+2 \right )-15 \left [ x> \cfrac{5}{2} \right ]
6.5. x-3\left ( x+2 \right )\leq 10+4\left ( 1-2x \right ) \left [ x\leq \cfrac{10}{3} \right ]
6.6. 5x+9\left ( 2-x \right )>3\left ( x+1 \right )-4\left ( 2+x \right )-3x Ogni valore di x
6.7. 8-2\left ( 3-4x\right )-\left (6x-10\right )\leq 6\left ( 4x+3\right )+8x \left [ x\geq -\cfrac{1}{5} \right ]
6.8. 4(2x-7)-3x+8\left ( 3-x \right )>9x-4\left ( 3x-1 \right )+20 nessun valore di x
6.9 3x-8>0 \left [ x>\cfrac{8}{3} \right ]
6.10. 5x-2<8x+3 \left [ x>-\cfrac{5}{3} \right ]
6.11. 1-3x<2x-6 \left [ x>\cfrac{7}{5} \right ]
6.12. 5x-2>2x+4 \left [ x>2\right ]
6.13. 3x+3>9x-3 \left [ x<1 \right ]
6.14. 18x+9>9x+11 \left [ x>\cfrac{2}{9} \right ]
6.15. 16x+10<17x+6 \left [ x>4 \right ]
6.16. 2x-5<3+2x sempre vera
6.17. 7a+1<7a nessun valore di a
6.18. 2(9x+5)>3(3x+4) \left [ x>\cfrac{2}{9} \right ]
6.19. 12(x+1)<17(x-1)+25 \left [ x>\cfrac{4}{5} \right ]
6.20. 6x-(4-x)<8x+(1-2x) \left [ x<5 \right ]
6.21. 6(x+1) \geq 3(1+2x) ogni valore di x
6.22. 6x-12+3(x+2)+2(x+3)<11 nessun valore di x
6.23. 10(x+1)+2(x+1)<11x+12 \left [ x<0 \right ]

Livello discreto: richiede manualità con le frazioni e lo sviluppo delle parentesi

 7.1. 2x-\cfrac{1}{2}>5x-1 \left [x<\cfrac{1}{6}\right ]
7.2. \cfrac{x-1}{2}-1> -x \left [ x>1 \right ]
7.3. 3x+\cfrac{3}{2}-x>\cfrac{x+1}{2} \left [ x>-\cfrac{2}{3} \right ]
7.4. x+\cfrac{1-x}{3}>2x-1 \left [ x<1 \right ]
7.5. \cfrac{1}{2}x-2\leq 3x-1 x\geq -\cfrac{2}{5}
7.6. 2x+3>\cfrac{4x-1}{2} \left [ \forall x\in \mathbb{R} \right ]
7.7. \cfrac{1}{5}\left ( x-2 \right )-\left [ 1+2x-\left ( x+\cfrac{1}{2} \right ) \right ]\leq 1 \left [ x\geq -\cfrac{19}{8} \right ]
7.8. 3x-1>\cfrac{9x+8}{3} nessuna soluzione
7.9. \cfrac{2x+1}{3}-\cfrac{x-1}{2}<0 \left [ x<-5 \right ]

Verso un livello buono e con una certa sicurezza

8.1. \left ( x-1 \right )^{2}+9x\left ( x-1 \right )>x^{2}-4x+4-\left ( 1+3x \right )\left ( 1-3x \right )  \left [ x<-\cfrac{2}{7} \right ]
8.2. \cfrac{\left ( x-1 \right )^{2}}{2}-\left ( \cfrac{x+1}{2} \right )^{2}-1<\cfrac{x^{2}-1}{4} \left [ x>-\frac{1}{3} \right ]
8.3. 9x+20\geq 2\left [ \cfrac{29}{4}-6\left ( x-1 \right )+9x-\cfrac{9}{4} \right ] \left [ x\geq \cfrac{2}{3} \right ]
8.4. \cfrac{\left ( x+1 \right )\left ( x-1 \right )}{2}-\cfrac{2x-3}{4}>\cfrac{\left ( 2x+1 \right )\left ( x-3 \right )}{4} \left [ x>-\cfrac{4}{3} \right ]

Per un livello ottimo

9.1.\cfrac{x}{\sqrt{2}}+\cfrac{\sqrt{2}}{\sqrt{2}-2}>x-\cfrac{1}{2-\sqrt{2}}  \left [ x<-\left ( \sqrt{2}+1 \right ) \right ]
9.2. \cfrac{\left ( x+\sqrt{2} \right )\left ( \sqrt{2}-x \right )}{4}+\cfrac{x}{3}>\cfrac{2\left ( x+1 \right )-3\left ( 1-2x \right )}{6}-\cfrac{1}{4}x^2 \left [ x<\cfrac{2}{3} \right ]

soluzioni[:de]

Catrin-Welz-Stein

Catrin-Welz-Stein

Per risolvere una disequazione si richiede soltanto di saper risolvere un’equazione di primo grado, valgono le stesse regole:

  • il coefficiente che moltiplica la x deve sempre essere positivo
  • per arrivare al punto precedente si può:
    • moltiplicare a sinistra e a destra per la stessa quantità,
    • sommare a sinistra e a destra per la stessa quantità
    • dividere a sinistra e a destra per la stessa quantità
UNICO AVVERTIMENTO
Se si moltiplica a sinistra e a destra per un numero negativo si cambia il verso

Livello sufficiente: richiedono di ricordarsi le regole per la soluzione delle equazioni di primo grado.

6.1.  4x+7<2x-9 [x<-8]
6.28-5x>2x-20 [x<4]
6.36(x+2)+3\leq 18 \left [ x\leq \cfrac{1}{2} \right ]
6.4. 4\left ( 3x-1 \right )-4\left ( 1+x \right )>6\left ( x+2 \right )-15 \left [ x> \cfrac{5}{2} \right ]
6.5. x-3\left ( x+2 \right )\leq 10+4\left ( 1-2x \right ) \left [ x\leq \cfrac{10}{3} \right ]
6.6. 5x+9\left ( 2-x \right )>3\left ( x+1 \right )-4\left ( 2+x \right )-3x Ogni valore di x
6.7. 8-2\left ( 3-4x\right )-\left (6x-10\right )\leq 6\left ( 4x+3\right )+8x \left [ x\geq -\cfrac{1}{5} \right ]
6.8. 4(2x-7)-3x+8\left ( 3-x \right )>9x-4\left ( 3x-1 \right )+20 nessun valore di x
6.9 3x-8>0 \left [ x>\cfrac{8}{3} \right ]
6.10. 5x-2<8x+3 \left [ x>-\cfrac{5}{3} \right ]
6.11. 1-3x<2x-6 \left [ x>\cfrac{7}{5} \right ]
6.12. 5x-2>2x+4 \left [ x>2\right ]
6.13. 3x+3>9x-3 \left [ x<1 \right ]
6.14. 18x+9>9x+11 \left [ x>\cfrac{2}{9} \right ]
6.15. 16x+10<17x+6 \left [ x>4 \right ]
6.16. 2x-5<3+2x sempre vera
6.17. 7a+1<7a nessun valore di a
6.18. 2(9x+5)>3(3x+4) \left [ x>\cfrac{2}{9} \right ]
6.19. 12(x+1)<17(x-1)+25 \left [ x>\cfrac{4}{5} \right ]
6.20. 6x-(4-x)<8x+(1-2x) \left [ x<5 \right ]
6.21. 6(x+1) \geq 3(1+2x) ogni valore di x
6.22. 6x-12+3(x+2)+2(x+3)<11 nessun valore di x
6.23. 10(x+1)+2(x+1)<11x+12 \left [ x<0 \right ]

Livello discreto: richiede manualità con le frazioni e lo sviluppo delle parentesi

 7.1. 2x-\cfrac{1}{2}>5x-1 \left [x<\cfrac{1}{6}\right ]
7.2. \cfrac{x-1}{2}-1> -x \left [ x>1 \right ]
7.3. 3x+\cfrac{3}{2}-x>\cfrac{x+1}{2} \left [ x>-\cfrac{2}{3} \right ]
7.4. x+\cfrac{1-x}{3}>2x-1 \left [ x<1 \right ]
7.5. \cfrac{1}{2}x-2\leq 3x-1 x\geq -\cfrac{2}{5}
7.6. 2x+3>\cfrac{4x-1}{2} \left [ \forall x\in \mathbb{R} \right ]
7.7. \cfrac{1}{5}\left ( x-2 \right )-\left [ 1+2x-\left ( x+\cfrac{1}{2} \right ) \right ]\leq 1 \left [ x\geq -\cfrac{19}{8} \right ]
7.8. 3x-1>\cfrac{9x+8}{3} nessuna soluzione
7.9. \cfrac{2x+1}{3}-\cfrac{x-1}{2}<0 \left [ x<-5 \right ]

Verso un livello buono e con una certa sicurezza

8.1. \left ( x-1 \right )^{2}+9x\left ( x-1 \right )>x^{2}-4x+4-\left ( 1+3x \right )\left ( 1-3x \right )  \left [ x<-\cfrac{2}{7} \right ]
8.2. \cfrac{\left ( x-1 \right )^{2}}{2}-\left ( \cfrac{x+1}{2} \right )^{2}-1<\cfrac{x^{2}-1}{4} \left [ x>-\frac{1}{3} \right ]
8.3. 9x+20\geq 2\left [ \cfrac{29}{4}-6\left ( x-1 \right )+9x-\cfrac{9}{4} \right ] \left [ x\geq \cfrac{2}{3} \right ]
8.4. \cfrac{\left ( x+1 \right )\left ( x-1 \right )}{2}-\cfrac{2x-3}{4}>\cfrac{\left ( 2x+1 \right )\left ( x-3 \right )}{4} \left [ x>-\cfrac{4}{3} \right ]

Per un livello ottimo

9.1.\cfrac{x}{\sqrt{2}}+\cfrac{\sqrt{2}}{\sqrt{2}-2}>x-\cfrac{1}{2-\sqrt{2}}  \left [ x<-\left ( \sqrt{2}+1 \right ) \right ]
9.2. \cfrac{\left ( x+\sqrt{2} \right )\left ( \sqrt{2}-x \right )}{4}+\cfrac{x}{3}>\cfrac{2\left ( x+1 \right )-3\left ( 1-2x \right )}{6}-\cfrac{1}{4}x^2 \left [ x<\cfrac{2}{3} \right ]

soluzioni[:]

Pubblicato in Senza categoria | Contrassegnato | Lascia un commento

Il paradosso di Zenone: introduzione alle successioni ed alle serie

th2WK6102E

Jacek Yerka

Un paradosso è una frase o un pensiero logico che sembra in contraddizione con il pensiero comune.

Il paradosso più conosciuto è quello di Zenone (filosofo greco del V secolo a.C.)

Eccolo:

Se Achille (detto “pie’ veloce”) venisse sfidato da una tartaruga nella corsa e concedesse alla tartaruga un piede di vantaggio, egli non riuscirebbe mai a raggiungerla, dato che Achille dovrebbe prima raggiungere la posizione occupata precedentemente dalla tartaruga che, nel frattempo, sarà avanzata raggiungendo una nuova posizione che la farà essere ancora in vantaggio; quando poi Achille raggiungerà quella posizione nuovamente la tartaruga sarà avanzata precedendolo ancora. Questo stesso discorso si può ripetere per tutte le posizioni successivamente occupate dalla tartaruga e così la distanza tra Achille e la lenta tartaruga pur riducendosi verso l’infinitamente piccolo non arriverà mai ad essere pari a zero.

Per meglio capire il paradosso si osservi la seguente figura:

image006Ossia si consideri che:

  • Achille vada ad una velocità doppia di quella della tartaruga
  • la tartaruga parta con mezzo metro di vantaggio rispetto Achille.
  • che si cerchi di capire se entrambi raggiungono il metro da percorrere.

Si può dimostrare che Zenone sbagliava in due maniere:

  • attraverso le nozioni fisica ed in particolare utilizzando la descrizione del moto rettilineo uniforme
  • attraverso la convergenza della serie numerica.

Dimostrazione mediante la convergenza della serie numerica.

  • la tartaruga andando ad una velocità che è metà di quella di Achille percorre sempre metà spazio rispetto a quella che percorre Achille.

Achille all’inizio percorre:

\cfrac{1}{2}

la tartaruga intanto, nello stesso tempo, si è spostata percorrendo:

\cfrac{1}{2}+\cfrac{1}{4}=\cfrac{3}{4}

Achille arriva al punto della tartaruga precedente mentre la tartaruga ha percorso

\cfrac{3}{4}+\cfrac{1}{8}=\cfrac{7}{8}

questo perché la tartaruga percorre sempre la metà del percorso fatto da Achille.

Si ha quindi la seguente tabella che schematizza la strada di Achille e quella della tartaruga:

                                            Achille Tartaruga
Tempo 0                                 0 \cfrac{1}{2}
Tempo 1                                 \cfrac{1}{2} \cfrac{1}{2}+\cfrac{1}{4}=\cfrac{3}{4}
Tempo 2                                 \cfrac{3}{4} \cfrac{3}{4}+\cfrac{1}{8}=\cfrac{7}{8}

Quindi per Achille si ha la seguente serie numerica:

0+\cfrac{1}{2}+\cfrac{1}{4}+\cfrac{1}{8}+...+\cfrac{1}{2^{n}}=\sum_{n=1}^{\infty }\cfrac{1}{2^{n}}

che si può dimostrare che tende ad 1!

analogamente la formula precedente descrive la strada percorsa dalla tartaruga che anch’essa converge ad 1.

Quindi l’errore di Zenone è quello di non considerare che la somma infinita di cifre più piccole di 1 converge ad 1! E quindi Achille raggiunge la tartaruga.

Pubblicato in Senza categoria | Lascia un commento

TEST INGRESSO prima superiore geometria

th1WKOENRL[WpProQuiz 16]

Pubblicato in Senza categoria | Lascia un commento

TEST INGRESSO prima superiore matematica

thWJUVUS6E[WpProQuiz 10]

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – II superiore – Anno 2014-2015 prova completa

thDS2S2B9I[WpProQuiz 15]

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – II superiore – Anno 2013-2014 prova completa

Jacek Yerka

Jacek Yerka

[WpProQuiz 14]

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – II superiore – Anno 2012-2013 prova completa

thM7BDEPV0[WpProQuiz 13]

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – II superiore – Anno 2011-2012 prova completa

thLYRALISE[WpProQuiz 12]

Pubblicato in Senza categoria | Lascia un commento